TA for dynamics & inverse problem

1 dynamics

Exercise 1. Prove Hennion's theorem, which says the following: Let $\mathcal{L} : \mathcal{B} \to \mathcal{B}$ be bounded on a Banach space $(\mathcal{B}, \|\cdot\|)$, and let $(\mathcal{B}', \|\cdot\|')$ be a Banach so that the inclusion $\mathcal{B} \subset \mathcal{B}'$ is compact. Assume that there exist $r_n \in \mathbb{R}$ and $R_n \in \mathbb{R}$ so that

$$\|\mathcal{L}^n\varphi\| \le r_n \|\varphi\| + R_n \|\varphi\|', \qquad \forall n \ge 1, \forall \varphi \in \mathcal{B}.$$

Then the essential spectral radius of \mathcal{L} on \mathcal{B} is not larger than $\liminf(r_n)^{1/n}$.

Exercise 2. For an integer $m \ge 2$, let $f_m : \mathbb{S}^1 \to \mathbb{S}^1$ be the multiplication by $m \pmod{1}$ on the circle and let $g_m : I \to I$ be the multiplication by $m \pmod{1}$ on I = [0, 1].

(a) Compute the zeroes of the dynamical determinants of $F = f_m$ and $F = g_m$, weighted with 1/|F'|,

$$d_{F,1/|F'|}(z) = \exp{-\sum_{n=1}^{\infty} \frac{z^n}{n} \sum_{x \in \operatorname{Fix} F^n} \frac{1}{|(F^n)(x)' - 1|}}$$

where Fix $F^n = \{x \mid F^n(x) = x\}.$

(b) For $\alpha > 0$, compute the essential spectral radius ρ_{α} of the transfer operator

$$\mathcal{L}_{F,1/|F'|}\varphi(x) = \sum_{F(y)=x} \frac{\varphi(y)}{|F'(y)|}$$

acting on C^{α} functions, for $F = f_m$ and $F = g_m$. (Hint: for the lower bound, find an open disc in which every point is an eigenvalue of infinite multiplicity.) Find the eigenvalues of modulus > $1/\rho_{\alpha}$ of $\mathcal{L}_{F,1/|F'|}$ on C^{α} . Describe the corresponding eigenfunctions. Check that the dual of $\mathcal{L}_{F,1/|F'|}$ preserves Lebesgue measure. Prove that f_m and g_m each has an invariant absolutely continuous probability measure, denoted μ_{f_m} and μ_{g_m} , respectively. What can we say about the rate of decay of correlations

$$\int \varphi \circ F^n \psi d\mu_F - \int \varphi d\mu_F \int \psi d\mu_F$$

for C^{α} functions φ and ψ and $F = f_m$ or $F = g_m$?

(c) Compute the zeroes and poles of the dynamical zeta functions of $F = f_m$ and $F = g_m$, weighted with 1/|F'|,

$$\zeta_{F,1/|F'|}(z) = \exp\sum_{n=1}^{\infty} \frac{z^n}{n} \sum_{x \in \operatorname{Fix} F^n} \frac{1}{|(F^n)'(x)|}.$$

Exercise 3. Let $Q : \mathcal{B} \to \mathcal{B}'$ be a bounded linear operator between Banach spaces. For $k \in \mathbb{Z}_+^*$, the k-th approximation number of Q is

$$a_k(\mathcal{Q}) = \inf\{\|\mathcal{Q} - \mathcal{R}\|_{\mathcal{B} \to \mathcal{B}'} \mid \operatorname{rank}(\mathcal{R}) < k\}.$$

- (a) Check that $\lim_{k\to\infty} |a_k(\mathcal{Q})| = 0$ implies that \mathcal{Q} is compact. (The inverse implication is not true in general!) (Hint: A finite rank operator is compact.)
- (b) Pietsch proved (see e.g. the book "Eigenvalues and s-numbers," Cambridge University Press, 1987) that for any bounded operator $\mathcal{Q} : \mathcal{B} \to \mathcal{B}$, if $a_k(\mathcal{Q}) \in \ell^1(\mathbb{Z}_+^*)$, then \mathcal{Q} is nuclear, and, if $a_k(\mathcal{Q}) \in \ell^q(\mathbb{Z}_+^*)$ for some $q \in (0, 1]$, then \mathcal{Q} is q-nuclear.

Using Pietsch's result, show that if $a_k(\mathcal{Q}) \in \ell^p(\mathbb{Z}^*_+)$ for 0 then $for any <math>q \in (0,1]$ there exists $\mathcal{N} = \mathcal{N}(p,q) < \infty$ so that $\mathcal{Q}^{\mathcal{N}}$ is q-nuclear.

Exercise 4. Consider the matrix $F = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ acting on the two-torus.

- (a) Prove that F is an area-preserving Anosov diffeomorphism.
- (b) Give a complete proof of the bound on the essential spectral radius of $\mathcal{L}\varphi(x) = (\varphi/|\det DF|) \circ F^{-1}(x)$ acting on the Banach spaces $\mathcal{B}^{t,s}$ defined in the course for real numbers s < 0 < t (or in Chapter 5.1 of the book).

(c) Compute the dynamical determinant

$$d_{F^{-1},g}(z) = \exp -\sum_{m=1}^{\infty} \frac{z^m}{m} \sum_{x:F^m(x)=x} \frac{\prod_{k=0}^{-(m-1)} g(F^k(x))}{|\det(\mathbb{1} - DF^{-m}(x))|}$$

and the dynamical zeta function

$$\zeta_{F^{-1},g}(z) = \exp\sum_{m=1}^{\infty} \frac{z^m}{m} \sum_{F^m(x)=x} \prod_{k=0}^{-(m-1)} g(F^k(x))$$

of F^{-1} for the weight $g = 1/|\det DF| \circ F^{-1}$. Deduce from this and the results of the course that

$$\int \varphi \circ F^n \psi dx - \int \varphi dx \int \psi dx$$

decays exponentially for C^{α} functions φ and ψ , with $\alpha > 0$. Give an upper bound on the rate of mixing.

2 Inverse problems

Exercise 5 (Computing symbols I). Consider the case of \mathbb{R}^2 , recall

$$I_0 f(\theta, s) = \int_{x \cdot \theta = s} f.$$

We take the adjoint with respect to the usual measure $d\theta ds$ on $\mathbb{S}^1 \times \mathbb{R}$. Prove

$$\frac{1}{2}\Delta^{1/2}I_0^*I_0 = \mathbb{1}.$$

(think of Fourier transforms).

For the rest of the exercises, we take some Riemannian surface with boundary (M, g).

Exercise 6. Verify that strict infinitesimal convexity implies the convexity of the interior of M. In other words, assuming that the boundary is strictly convex — II > 0 — show that there are no geodesics of M tangent to its boundary, and not reduced to a point.

Exercise 7 (Integrating the flow). Recall $\Pi = I^*I$, and

$$R_{\pm}f = \pm \int_0^{\pm\infty} f \circ \varphi_t dt.$$

Assume that $f \in C^{\infty}(SM)$.

(a) Check that

$$\Pi f = (R_+ - R_-)f.$$

(b) Deduce that $f \in \ker I$ if and only if there exists $u \in C^{\infty}(SM \setminus \partial_0 SM) \cap C^0(SM)$, vanishing at the boundary with -Xu = f.

Exercise 8 (Computing some wavefront sets). Recall Jared's talk and

- (a) Prove that if $u \in \mathcal{D}'(X \times Y)$ and $\pi : X \times Y \to Y$ is the right projection, $WF(\pi_* u) = d\pi(WF(u) \cap N^*X).$
- (b) If ψ_t is a smooth flow, compute its wavefront set.
- (c) Deduce the wavefront set of Π .

Exercise 9 (Computing symbols II). If $\pi_0 : TM \to M$ is the projection, $I_0 = I\pi_0^*$ and $\Pi_0 = I_0^*I_0$.

- (a) Find the wavefront set of Π_0 .
- (b) When there are no conjugate points, check that Π_0 is a pseudor, and compute the principal symbol. (cut the operator into a smoothing part and another supported close to the diagonal).
- (c) More generally, if χ is a cutoff around a transient trajectory, show $I_0^* \chi^2 I_0$ is a pseudor.

Exercise 10 (Applications in the non-trapping case). When there are neither conjugate points, nor trapped geodesics,

- (a) Show that functions in ker $I_0 \cap L^1(M)$ are smooth up to the boundary. (hint: imagine that you know that they have to vanish to all order at the boundary)
- (b) Assuming that I_0 is injective, show that I_0^* is surjective from $H^{s-1/2}(\partial SM)$ to $H^s(M)$ (provided s > 1/2).

Exercise 11. Without assumption on conjugate points, show that

$$I_0^*I_0: H^{-1/2}_{comp}(M) \to H^{1/2}_{loc}(M).$$